Chemistry of Hantzsch Cyclization: Stereochemistry of the 2-Hydroxy-1,2,3,4tetrahydropyridine Intermediate of Hantzsch Cyclization. X-Ray Molecular Structure of Diastereoisomers of 5-(2-Cyanoethyl) 3-Methyl 2-Dimethoxymethyl-2-hydroxy-6-methyl-4-(3-nitrophenyl)-1,2,3,4-tetrahydropyridine-3,5-dicarboxylates

Toshihisa Ogawa,*, ${ }^{\text {a }}$ Keita Matsumoto, ${ }^{a}$ Katsuo Hatayama, ${ }^{\text {a }}$ Kunihiro Kitamura ${ }^{\text {a }}$ and Yasuyuki Kita ${ }^{*, b}$
${ }^{a}$ Research Center, Taisho Pharmaceutical Co., Ltd., 1-403 Yoshino-cho, Omiya, Saitama 330, Japan
${ }^{\text {b }}$ Faculty of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-oka, Suita, Osaka 565, Japan

Abstract

Hantzsch cyclization of cyanoethyl 3-aminocrotonate and (E, Z)-4,4-dialkoxy-2-benzylideneacetoacetates 12a-h afforded the corresponding 3,4-trans-2-hydroxy-1,2,3,4-tetrahydropyridines 14a-h with high stereoselectivity. ${ }^{1} \mathrm{H}$ NMR and X-ray analyses of compound 14a established the configuration of $3-\mathrm{H}$ and $4-\mathrm{H}$ as trans and that of $3-\mathrm{H}$ and $2-\mathrm{OH}$ as trans also.

Since the discovery of nifedipine 1 in $1971,{ }^{1}$ a clinically important antihypertensive and antiangina drug, various chemical modifications ${ }^{2}$ of 1,4-dihydropyridines, such as nicardipine 2 , nimodipine 3 , benidipine 4 , manidipine 5 , CD-349 6, and Bay K-8644 7 have been developed with the aim of enhancing the antihypertensive activity and duration of action.

In addition to their clinical utility in cardiovascular medicine, dihydropyridines are employed as biological tools for the study of voltage-activated calcium-channel structures and functions. ${ }^{3}$ These 4 -(substituted aryl)-1,4-dihydropyridines were easily accessible by using the classical method of Hantzsch synthesis, ${ }^{4}$ and all were obtained directly without formation of the reaction intermediates, 2 -hydroxy-1,2,3,4-tetrahydropyridines. Contrary to the ordinary reaction, the Hantzsch intermediates, 4-aryl-2,6-dihydroxy-2,6-bis(trifluoromethyl)piperidine-3,5-dicarboxyl-
ates 8a-c and 4-aryl-2-hydroxy-6-methyl-2-trifluoromethyl-1,2,3,4-tetrahydropyridine-3,5-dicarboxylates 9a, b were obtained by using ethyl 4 -(trifluoromethyl)acetoacetate instead of methyl acetoacetate. ${ }^{5.6}$ However, the stereochemistry of intermediates 8 and 9 has not been studied to any depth and both stereochemistry and the mechanism of Hantzsch cyclization remain unclear.

8a-c
a; $\mathrm{X}=2-\mathrm{NO}_{2}$
b; $\mathrm{X}=3-\mathrm{NO}_{2}$
c; $X=3-\mathrm{Cl}$

9a-c
a; $X=4-\mathrm{NO}_{2}$
b; $X=3,4-\mathrm{Cl}_{2}$

Very recently, we have briefly reported a Hantzsch reaction using 2-cyanoethyl 3 -aminocrotonate and (E, Z)-4,4-dialkoxy-2-benzylideneacetoacetates 12a, b which gives the Hantzsch intermediates, 3,4-trans-2-hydroxy-1,2,3,4-tetrahydropyridines 14a, b with high stereoselectivity. ${ }^{7}$ We now present a full account of the stereochemistry of these Hantzsch intermediates and additional examples of the formation of intermediates $\mathbf{1 4 c}-\mathrm{h}$ from keto esters $\mathbf{1 2 c - h}$.

Results and Discussion

First, Hantzsch cyclization of 2-cyanoethyl 3-aminocrotonate and methyl 2-(3-nitrobenzylidene)-4,4-dimethoxyacetoacetate 12a, ${ }^{8}$ derived from 3-nitrobenzaldehyde 11a and methyl 4,4dimethoxyacetoacetate, 10a ${ }^{8}$ was performed in refluxing propan- 2 -ol in the presence of piperidine acetate to give a mixture of diastereoisomeric 2-hydroxy-1,2,3,4-tetrahydropyridines 14 a and 15 a in the ratio $3.47: 1$ in 66% yield along with the 1,4 -dihydropyridine 16 a in 16% yield (Scheme 1).

The diastereoisomers 14a and 15a along with compound 16a were readily separated by chromatography on silica gel ($2: 1$) ethyl acetate-hexane, 14a $R_{\mathrm{f}} 0.13,15 \mathrm{a} R_{\mathrm{f}} 0.28,16 \mathrm{a} R_{\mathrm{f}} 0.45$). The structures of diastereoisomers 14a and 15a were assigned from both their spectral data and their ready conversion into the

a; $\mathbf{R}^{1}=R^{2}=M e$
a; $\mathrm{X}=3-\mathrm{NO}_{2}$
b; $R^{1}=R^{2}=E t$
b; $X=3-\mathrm{CF}_{3}$
c; $R^{1}=E t, R^{2}=P r^{\dot{d}}$
c; $X=2-\mathrm{CF}_{3}$
d; $R^{1}=E t, R^{2}=B u^{i}$
d; $X=3-\mathrm{Cl}$
e; $X=2-H$

14a-h

13

12a-h

16a-h

Scheme 1 Reagents: i, piperidine-AcOH; ii, $\mathrm{MeC}\left(\mathrm{NH}_{2}\right)=\mathrm{CHCO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CN}$
corresponding dihydropyridine 16a by treatment with camphorsulfonic acid* in acetone.

In order to ascertain the stereochemistry of 2-OH in both isomers, crystal X-ray diffraction analyses of compounds 14a and 15a were carried out (Fig. 1). The crystal X-ray diffraction analysis of isomer 14a indicated that the relative configuration of $3-\mathrm{H}$ and $4-\mathrm{H}$ of the tetrahydropyridine ring was trans [torsion angle of $3(\mathrm{H})-\mathrm{C}(3)-\mathrm{C}(4)-4(\mathrm{H})-158.1^{\circ}$] and that of 3H and $2-\mathrm{OH}$ is also trans [torsion angle $3(\mathrm{H})-\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{O}(2)$ 170.6°. On the other hand, analysis of isomer 15a indicated the relative configuration of $3-\mathrm{H}$ and $4-\mathrm{H}$ to be cis [torsion angle $\left.3(\mathrm{H})-\mathrm{C}(3)-\mathrm{C}(4)-4(\mathrm{H}) 44.0^{\circ}\right]$ and that of $3-\mathrm{H}$ and $2-\mathrm{OH}$ to be trans [torsion angle of $3(\mathrm{H})-\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{O}(2)-170.7^{\circ}$]. As can be seen from Fig. 1, the 4 -aryl residue of isomer 14a is in a pseudoequatorial position and that of isomer 15a is in a pseudoaxial position, i.e., standing virtually perpendicular to the plane of the tetrahydropyridine ring. Further, the plane of the aromatic ring nearly bisects the 1,2,3,4-tetrahydropyridine ring and the nitro group is orientated syn periplanar to the C-4 methine proton of the $1,2,3,4$-tetrahydropyridine. The acetal

[^0]
oxygen in the side-chain and the hydrogen atom on the 1,2,3,4tetrahydropyridine nitrogen are essentially coplanar. The interatomic distance between the hydrogen atom on the nitrogen and the acetal oxygen in isomers 14a and 15a is 2.69 and $2.86 \AA$, respectively. This indicates the existence of an intramolecular hydrogen bond. Thus, the stereochemistry of diastereoisomers 14a and 15a was unambiguously assigned as shown in Scheme 1.

Hantzsch cyclization of 2-cyanoethyl 3-aminocrotonate under the same conditions as for compound $\mathbf{1 2 b}^{8}$ proceeded similarly with high stereoselectivity to give a mixture of products 14b, 15b and 16b (entry 2 in Table 1). Further, the reaction of 2-cyanoethyl 3 -aminocrotonate with keto esters 12c, d afforded the corresponding products $14 \mathrm{c}, \mathrm{d}$ with higher threoselectivity than that in the reaction of 12a, b. The formation of products $14 \mathrm{c}, \mathbf{d}$ with high threo-selectivity shows that a bulky substituent such as isopropyl \dagger (entry 3) or isobutyl \dagger (entry 4) of the ester group influences the threo-selectivity. In the case of displacement substituents such as trifluoromethyl, chloro, and hydrogen in the phenyl ring of compounds 12b, Hantzsch cyclization of intermediates $\mathbf{1 2 e}$-h with 2-cyanoethyl 3aminocrotonate under the same conditions as above gave the corresponding 3,4-trans-1,2,3,4-tetrahydropyridines 14 with high threo-selectivity (entries 5-8). In particular, cyclization using intermediates $\mathbf{1 2 f}-\mathrm{h}$ proceeded with threo-selectivity without the formation of compounds $\mathbf{1 5 f}-\mathrm{h}$, but resulted in a low yield (33%) of compound $\mathbf{1 2 f}$. Apparently, the stereochemical course of the reaction was not only determined by the nature of the ester group, but also by substituent effects on the phenyl
\dagger The keto esters $\mathbf{1 0 c}$, \mathbf{d} were prepared by reaction of compound $\mathbf{1 0 b}$ with a substituted sodium alkoxide.
$10 \mathrm{~b} \xrightarrow{\mathrm{Na} / \mathrm{R}^{2} \mathrm{OH}} 10 \mathrm{c} \mathrm{R}^{1}=\mathrm{Et}, \mathrm{R}^{2}=\mathrm{Pr}^{\mathrm{i}} ; \mathbf{1 0 d} \mathrm{R}^{1}=\mathrm{Et}, \mathrm{R}^{2}=\mathrm{Bu}^{\mathrm{i}}$

14a

15a

Fig. 1 X-Ray molecular structure of compounds 14a and 15a
Table 1 Hantzsch cyclization of 2-cyanoethyl 3-aminocrotonate with (E, Z)-4-dialkoxy-2-benzylideneacetoacetate 12a-h

| Entry | X | R^{1} | R^{2} | Time
 (t / h) | \% Yield of $\mathbf{1 4}+\mathbf{1 5}{ }^{\boldsymbol{a}}$
 (Product ratio 14:15) $)^{\text {b.c }}$ | \% Yield of $\mathbf{1 6}^{\boldsymbol{a}}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

${ }^{a}$ Isolation based on the corresponding substrate $12 .{ }^{b}$ Determined on the crude product. ${ }^{c}$ The ratios $14: 15$ were determined by HPLC.*

* Compounds 14a-h, 15a-h and 16a-h were analysed by high-pressure liquid chromatography (HPLC) analysis [conditions: reversed-phase TSK gel ODS-80TH; mobile phase, $\mathrm{MeOH}-$ water- $\mathrm{H}_{3} \mathrm{PO}_{4}\left(55: 45: 0.5\right.$); flow rate $1.0 \mathrm{~cm}^{3} \mathrm{~min}^{-1} ; \mathrm{UV}, 237 \mathrm{~nm}$].
ring in the Michael addition in the first step of the Hantzsch cyclization. The yield and ratio for threo/erythro isomers are shown in Table 1.

For the present highly stereoselective Hantzsch-type reaction, the following mechanism may be presumed. In the first step of the Hantzsch method, the most favourable formation of the Michael adduct should be via a six-membered-ring transition state $A,{ }^{9}$ which leads to the 3 - and 4 -trans transition state \mathbf{B} avoiding the repulsion between the phenyl group and the ester substituents. Although the stereochemical course of the present Hantzsch cyclization is unclear at the second stage, the results described in this paper strongly suggest that the observed stereoselection may reflect the effects of steric interactions alone. Assuming two transition states \mathbf{B} and \mathbf{C} leading to products $\mathbf{1 4 a}-\mathrm{h}$ and $\mathbf{1 5 a}-\mathrm{h}$, transition state \mathbf{B} would be favoured over \mathbf{C} because in transition state \mathbf{C} steric repulsion between the acetal and 3-alkyl ester is present (Fig. 2). According to such a transition state, ring closure of the nitrogen
nucleophile, in its energetically preferred conformation, takes place predominantly on the si-face of the carbonyl group. It seems likely that the predominant formation of stable products 14a-h and 15a-e has been attributed to formation of a hydrogen bond between the amino proton and acetal oxygen.

In summary we offer a new insight into the mechanism of Hantzsch cyclization, suggesting that the Michael addition of 2cyanoethyl 3 -aminocrotonate to Z - and E-benzylideneacetates 12a-h, which leads to 3-,4-trans intermediate B, gives 3,4-trans-2-hydroxy-1,2,3,4-tetrahydropyridines $14 a-h$ predominantly, with high stereoselectivity.

Experimental

M.p.s were determined on a Yanagimoto micro melting point apparatus and are uncorrected. IR spectra were recorded on a JASCO DS-301 spectrometer. NMR spectra were recorded on a Varian XL-200 (200 MHz) spectrometer using tetramethyl-

$14 a, b$

Fig. 2
silane as internal standard. Chemical shifts (δ) are given in ppm, and J values are given in Hz . Mass spectra were measured on a Shimadzu LKB 9000 spectrometer.

Isopropyl 4,4-Diethoxyacetoacetate 10c.--Sodium (2.76 g , 120 mmol) was added to propan-2-ol ($150 \mathrm{~cm}^{3}$) under nitrogen at $100^{\circ} \mathrm{C}$. When the sodium had dissolved, ethyl 4,4diethoxyacetoacetate 3b ($21.8 \mathrm{~g}, 100 \mathrm{mmol}$) was added and the resulting solution was stirred for 20 h at $110^{\circ} \mathrm{C}$. Solvent was removed under reduced pressure. Dil. acetic acid was added to the residue and the solution was extracted with AcOEt ($\times 2$). The combined extracts were washed successively with water and brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated under reduced pressure to give title compound 10 c as an oil $(21.5 \mathrm{~g}, 93 \%$), b.p. 116$118{ }^{\circ} \mathrm{C} / 0.2 \mathrm{mmHg}$ (Found: $\mathrm{C}, 56.8 ; \mathrm{H}$, 8.4. $\mathrm{C}_{11} \mathrm{H}_{20} \mathrm{O}_{5}$ requires $\mathrm{C}, 56.88 ; \mathrm{H}, 8.68 \%)$; $v_{\text {max }}($ neat $) / \mathrm{cm}^{-1} 1729$ and $1751(\mathrm{C}=\mathrm{O})$; $\delta_{\mathrm{H}}\left(200 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.26-1.33(4 \times 3 \mathrm{H}, \mathrm{m}, 4 \times \mathrm{Me}), 3.56$ $\left(2 \mathrm{H}, \mathrm{s}, \mathrm{COCH}_{2} \mathrm{CO}\right), 3.63-3.78\left(2 \times 2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{OCHOCH}_{2}\right)$, $4.69(1 \mathrm{H}, \mathrm{s}, 4-\mathrm{H})$ and $5.10\left(1 \mathrm{H}, \mathrm{m}, \mathrm{OCH} \mathrm{Me}_{2}\right)$; m/z $232\left(\mathrm{M}^{+}\right)$.

Isobutyl 4,4-Diethoxyacetoacetate 10d.-By the same workup procedure as that described above, compound 10 d was obtained as an oil in 91% yield, b.p. $114-115^{\circ} \mathrm{C} / 0.2 \mathrm{mmHg}$ (Found: C, 58.3; H, 8.95. $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{5}$ requires $\mathrm{C}, 58.51 ; \mathrm{H}, 9.00 \%$); $v_{\text {max }}($ neat $) / \mathrm{cm}^{-1} 1732$ and $1752(\mathrm{C}=0) ; \delta_{\mathrm{H}}\left(200 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ $0.81-1.01(2 \times 3 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{Me}), 1.08-1.34(2 \times 3 \mathrm{H}, \mathrm{m}$, $2 \times \mathrm{Me}), 1.92\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH} \mathrm{Me}_{2}\right), 3.44-3.81(3 \times 2 \mathrm{H}, \mathrm{m}$, $\left.3 \times \mathrm{CH}_{2}\right), 3.63\left(2 \mathrm{H}, \mathrm{s}, \mathrm{COCH}_{2} \mathrm{CO}\right), 3.92(2 \mathrm{H}, \mathrm{d}, J 8$, $\left.\mathrm{OCH}_{2} \mathrm{CH}\right)$ and $4.68\left(1 \mathrm{H}, \mathrm{s}\right.$, EtOCHOEt); $m / z 246\left(\mathrm{M}^{+}\right)$.
(E,Z)-Isopropyl 4,4-Diethoxy-2-(3-nitrobenzylidene)acetoacetate 12c.-A solution of 3-nitrobenzaldehyde 11a (15.1 g, 100 mmol), isopropyl 4,4-diethoxyacetoacetate $10 \mathrm{c}(23.2 \mathrm{~g}, 100$ $\mathrm{mmol})$, piperidine ($1.70 \mathrm{~g}, 20.0 \mathrm{mmol}$) and $\mathrm{AcOH}(1.20 \mathrm{~g}, 20.0$ mmol) in benzene ($200 \mathrm{~cm}^{3}$) was refluxed under azeotropic dehydration for 2 h . The resulting solution was washed with water and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was evaporated off, and the residue was chromatographed on silica gel. Elution by hexane-ethyl acetate ($2: 1, \mathrm{v} / \mathrm{v}$) gave an oily mixture of E and Z forms of title compound 12 c ($30.3 \mathrm{~g}, 83 \%$) (Found: C, 59.0; H,
6.1; N, 3.7. $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{NO}_{7}$ requires $\mathrm{C}, 59.18$; $\mathrm{H}, 6.33$; $\mathrm{N}, 3.83 \%$); $v_{\text {max }}$ (neat) $/ \mathrm{cm}^{-1} 1718(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(200 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.21-$ $1.41(4 \times 3 \mathrm{H}, \mathrm{m}, 4 \times \mathrm{Me}), 3.52-3.83\left(2 \times 2 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}_{2}\right)$, 4.99 and $5.18(1 \mathrm{H}$, each s, EtOCHOEt), $5.13-5.19(1 \mathrm{H}, \mathrm{m}$, $\mathrm{MeCHMe}), 7.46-8.42(4 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$ and 7.74 and $7.95(1 \mathrm{H}$, each $\mathrm{s}, \mathrm{CH}=$); the ratio of isomers was 1:1 judged from the NMR spectrum; $m / z 365\left(\mathrm{M}^{+}\right)$.
(E,Z)-Isobutyl 4,4-Diethoxy-2-(3-nitrobenzylidene)acetoacetate 12d.-The previous procedure was repeated exactly, using 3-nitrobenzaldehyde 11a ($15.1 \mathrm{~g}, 100 \mathrm{mmol}$), isobutyl 4,4diethoxyacetoacetate $10 \mathrm{~d}(24.6 \mathrm{~g}, 100 \mathrm{mmol}$), piperidine (1.70 g , $20.0 \mathrm{mmol})$, and $\mathrm{AcOH}(1.20 \mathrm{~g}, 20.0 \mathrm{mmol})$. The product was obtained as an oily mixture of E and Z forms (1:1) of compound 12d ($28.4 \mathrm{~g}, 63 \%$) (Found: C, 66.4; H, 5.4; N, 3.0. $\mathrm{C}_{25} \mathrm{H}_{25} \mathrm{NO}_{7}$ requires C, $66.51 ; \mathrm{H}, 5.58 ; \mathrm{N}, 3.10 \%$); $\nu_{\text {max }}($ neat $) / \mathrm{cm}^{-1} 1718$ $(\mathrm{C}=0) ; \delta_{\mathrm{H}}\left(200 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.76-1.35(4 \times 3 \mathrm{H}, \mathrm{m}$, $4 \times \mathrm{Me})$, $1.82-2.11(1 \mathrm{H}, \mathrm{m}, \mathrm{MeCHMe}), 3.50-3.83(3 \times 2 \mathrm{H}$, $\mathrm{m}, 3 \times \mathrm{CH}_{2}$), 4.98 and 5.18 (1 H , each s, EtOCHOEt), 7.48 $8.37(4 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$ and 7.74 and $7.93(1 \mathrm{H}$, each s, $\mathrm{CH}=$); m / z $451\left(\mathrm{M}^{+}\right)$.
(E,Z)-Ethyl 4,4-Diethoxy-2-[3-(trifluoromethyl)benzylidene]acetoacetate 12e.-The previous procedure was repeated exactly, using 3-(trifluoromethyl)benzaldehyde $11 \mathrm{~b}(17.4 \mathrm{~g}, 100$ mmol), ethyl 4,4-diethoxyacetoacetate 10 b ($21.8 \mathrm{~g}, 100 \mathrm{mmol}$), piperidine ($1.70 \mathrm{~g}, 20.0 \mathrm{mmol}$), and $\mathrm{AcOH}(1.20 \mathrm{~g}, 20.0 \mathrm{mmol})$. The product was obtained as an oily mixture of E and Z forms (1:1) of compound $12 \mathrm{e}(21.0 \mathrm{~g}, 58 \%$) (Found: C, $56.3 ; \mathrm{H}, 5.8$. $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{~F}_{3} \mathrm{O}_{5}$ requires $\mathrm{C}, 56.35 ; \mathrm{H}, 5.84 \%$); $\nu_{\text {max }}($ neat $) / \mathrm{cm}^{-1}$ $1723(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(200 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.08-1.42(3 \times 3 \mathrm{H}, \mathrm{m}$, $3 \times \mathrm{Me}), 3.44-3.79\left(2 \times 2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{OCHOCH}_{2}\right), 4.20-4.38$ $\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CO}_{2} \mathrm{CH}_{2}\right), 4.93$ and $5.19\left(1 \mathrm{H}\right.$, each $\mathrm{s}, \mathrm{CH}_{2}-$ $\mathrm{OCHOCH} 2), 7.35-7.79(4 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$ and 7.80 and $7.95(1 \mathrm{H}$, each s, $\mathrm{CH}=$); $m / z 362\left(\mathrm{M}^{+}\right)$.
(E,Z)-Ethyl 4,4-Diethoxy-2-[2-(trifluoromethyl)benzylidene]acetoacetate $\mathbf{1 2 f}$.-The previous procedure was repeated exactly, using 2-(trifluoromethyl)benzaldehyde $11 \mathrm{c}(17.4 \mathrm{~g}, 100$ $\mathrm{mmol})$, ethyl 4,4-diethoxyacetoacetate $10 \mathrm{~b}(21.8 \mathrm{~g}, 100 \mathrm{mmol})$, piperidine ($1.70 \mathrm{~g}, 20.0 \mathrm{mmol}$) and $\mathrm{AcOH}(1.20 \mathrm{~g}, 20.0 \mathrm{mmol})$. The product was obtained as an oily mixture of E and Z forms (1:1) of title compound $12 \mathrm{f}(23.8 \mathrm{~g}, 66 \%$) (Found: C, $56.3 ; \mathrm{H}$, 5.7. $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{~F}_{3} \mathrm{O}_{5}$ requires $\mathrm{C}, 56.35 ; \mathrm{H}, 5.84 \%$); $v_{\text {max }}($ neat $) /$ $\mathrm{cm}^{-1} 1723(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(200 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ 0.93-1.40(3×3 H, $\mathrm{m}, 3 \times \mathrm{Me}), 3.42-3.78\left(2 \times 2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{OCHOCH}_{2}\right), 4.02-$ $4.42\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CO}_{2} \mathrm{CH}_{2}\right), 4.80$ and $5.19(1 \mathrm{H}$, each s, EtOCHOEt), $7.33-7.78(4 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$ and 7.46 and $7.50(1 \mathrm{H}$, each s, $\mathrm{CH}=)$; $m / z 362\left(\mathrm{M}^{+}\right)$.
(E,Z)-Ethyl 2-(3-Chlorobenzylidene)-4,4-diethoxyacetoacetate $\mathbf{1 2 g}$.-The previous procedure was repeated exactly, using 3-chlorobenzaldehyde $4 \mathrm{~d}(14.0 \mathrm{~g}, 100 \mathrm{mmol})$, ethyl 4,4 diethoxyacetoacetate $10 \mathrm{~b}(21.8 \mathrm{~g}, 100 \mathrm{mmol})$, piperidine $(1.70 \mathrm{~g}$, $20.0 \mathrm{mmol})$, and $\mathrm{AcOH}(1.20 \mathrm{~g}, 20.0 \mathrm{mmol})$. The product was obtained as an oily mixture of E and Z forms (1:1) of title compound 12g ($22.2 \mathrm{~g}, 65 \%$) (Found: C, 59.8 ; H, 6.1. $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{ClO}_{5}$ requires C, $59.90 ; \mathrm{H}, 6.21 \%$); $v_{\text {max }}($ neat $) / \mathrm{cm}^{-1}$ 1751 and $1729(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(200 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.08-1.38(3 \times$ $3 \mathrm{H}, \mathrm{m}, 3 \times \mathrm{Me}), 3.55-3.85\left(2 \times 2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{OCHOCH}_{2}\right)$, 4.21-4.32 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CO}_{2} \mathrm{CH}_{2}$), 4.35 and $4.90(1 \mathrm{H}$, each s, EtOCHOEt), 7.21-7.89 ($4 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$) and 7.48 and $7.53(1 \mathrm{H}$, each s, $\mathrm{CH}=$); m/z $340\left(\mathrm{M}^{+}\right)$.
(E,Z)-Ethyl 2-Benzylidene-4,4-diethoxyacetoacetate 12h.The previous procedure was repeated exactly, using benzaldehyde $4 \mathrm{e}(15.1 \mathrm{~g}, 100 \mathrm{mmol})$, ethyl 4,4 -diethoxyacetoacetate $10 \mathrm{~b}(21.8 \mathrm{~g}, 100 \mathrm{mmol})$, piperidine $(1.70 \mathrm{~g}, 20.0 \mathrm{mmol})$, and
$\mathrm{AcOH}(1.20 \mathrm{~g}, 20.0 \mathrm{mmol})$. The product was obtained as an oily mixture of E and Z forms ($1: 1$) of compound $12 \mathrm{~h}(25.3 \mathrm{~g}, 83 \%$) (Found: C, 66.6; H, 7.1. $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{O}_{5}$ requires C, $66.65 ; \mathrm{H}, 7.24 \%$); $v_{\text {max }}($ neat $) / \mathrm{cm}^{-1} 1719(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(200 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.09-$ $1.38(3 \times 3 \mathrm{H}, \mathrm{m}, 3 \times \mathrm{Me}), 3.45-3.80\left(2 \times 2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right.$ $\left.\mathrm{OCHOCH}_{2}\right), 4.18-4.35\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CO}_{2} \mathrm{CH}_{2}\right), 4.88$ and $5.19(1 \mathrm{H}$, each s, $\left.\mathrm{CH}_{2} \mathrm{OCHOCH} 2\right), 7.30-7.53(5 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$ and 7.82 and $7.95\left(1 \mathrm{H}\right.$, each s, $\mathrm{CH}=$); $m / z 306\left(\mathrm{M}^{+}\right)$.

Reaction of 2-Cyanoethyl 3-Aminocrotonate with (E,Z)Methyl 4,4-Dimethoxy-2-(3-nitrobenzylidene)acetoacetate 12a: Formation of (2S,3R,4S)-5-(2-Cyanoethyl)-3-Methyl 2-(Dimeth-oxymethyl-2-hydroxy-6-methyl-4-(3-nitrophenyl)-1,2,3,4-tetra-hydropyridine-3,5-dicarboxylate 14a, (2R,3S,4S)-5-(2-Cyanoethyl) 3-Methyl 2-Dimethoxymethyl-2-hydroxy-6-methyl-4-(3-nitrophenyl)-1,2,3,4-tetrahydropyridine-3,5-dicarboxylate 15a and 5-(2-Cyanoethyl) 3-Methyl 2-Dimethoxymethyl-6-methyl-4-(3-nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylate 16a.-A mixture of (E, Z)-methyl 4,4-dimethoxy-2-(3-nitrobenzylidene)acetoacetate $12 \mathrm{a}(3.09 \mathrm{~g}, 10.0 \mathrm{mmol})$ and 2-cyanoethyl 3aminocrotonate ($1.54 \mathrm{~g}, 10.0 \mathrm{mmol}$) in propan-2-ol ($30 \mathrm{~cm}^{3}$) was stirred and refluxed for 5 h . The solvent was removed, and the residue was purified by chromatography on silica gel with hexane-ethyl acetate ($1: 2$). The first fraction of elute gave compound 16 a as yellow crystals ($0.71 \mathrm{~g}, 16 \%$), m.p. $100-101^{\circ} \mathrm{C}$ (from $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{Pr}^{\mathrm{i}} \mathrm{O}$) (Found: $\mathrm{C}, 56.5 ; \mathrm{H}, 5.2 ; \mathrm{N}, 9.4$. $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{8}$ requires C, $\left.56.62 ; \mathrm{H}, 5.20 ; \mathrm{N}, 9.43 \%\right)$; $v_{\max }(\mathrm{KBr}) /$ $\mathrm{cm}^{-1} 3364(\mathrm{NH}), 2255(\mathrm{CN})$ and $1694(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}(200 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 2.41(3 \mathrm{H}, \mathrm{s}, 6-\mathrm{Me}), 2.66\left(2 \mathrm{H}, \mathrm{t}, J 6, \mathrm{CH}_{2} \mathrm{CN}\right), 3.46$, 3.51 and $3.69(3 \times 3 \mathrm{H}$, each s, $3 \times \mathrm{OMe}), 4.28(2 \mathrm{H}, \mathrm{m}$, $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CN}$), $5.15(1 \mathrm{H}, \mathrm{s}, 4-\mathrm{H}), 6.03(1 \mathrm{H}, \mathrm{s}, \mathrm{MeOCHOMe})$, $6.92(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH})$ and $7.46-8.17(4 \mathrm{H}, \mathrm{m}, \mathrm{ArH}) ; \delta_{\mathrm{c}}(75 \mathrm{MHz}$; CDCl_{3}) 166.31, 166.10, 148.86, 148.50, 146.71, 143.85, 134.16, $129.11,122.74,121.77,117.00,104.90,101.48,98.52,58.49,55.76$, 55.18, 51.58, 39.77, 20.09 and 18.16; $m / z 445\left(\mathrm{M}^{+}\right)$.

The second fraction eluted with the same solvent gave compound 15a as plates ($0.69 \mathrm{~g}, 15 \%$), m.p. $130-131{ }^{\circ} \mathrm{C}$ (from $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{Pr}^{\mathrm{i}}{ }_{2} \mathrm{O}$) (Found: C, 54.4; H, 5.4; N, 9.1. $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{9}$ requires $\mathrm{C}, 54.42 ; \mathrm{H}, 5.44 ; \mathrm{N}, 9.07 \%) ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3342$ (NH), 2253 (CN), 1715 and $1692(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}(200 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 2.42\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CN}\right), 2.49(3 \mathrm{H}, \mathrm{s}, 6-\mathrm{Me}), 3.40(3 \mathrm{H}, \mathrm{s}$, $\mathrm{CO}_{2} \mathrm{Me}$), 3.42 ($1 \mathrm{H}, \mathrm{d}, J 7.5,3-\mathrm{H}$), $3.63(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.84(3 \mathrm{H}$, $\mathrm{s}, \mathrm{OMe}), 3.89(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 4.10\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CN}\right), 4.18$ ($1 \mathrm{H}, \mathrm{s}, \mathrm{MeOCHOMe}$), 4.53 ($1 \mathrm{H}, \mathrm{d}, J 7.5,4-\mathrm{H}$), 5.71 ($1 \mathrm{H}, \mathrm{br} \mathrm{s}$, $\mathrm{NH})$ and $7.30-8.10(4 \mathrm{H}, \mathrm{m}, \mathrm{ArH}) ; \delta_{\mathrm{c}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ $173.68,166.12,153.85,147.77,143.00,135.73,128.35,124.09$, $121.95,117.01,106.72,94.05,81.70,59.89,57.67,56.01,52.46$, 46.56, 40.40, 21.83 and 18.12; $m / z 464\left(\mathrm{M}^{+}+\mathrm{H}\right)$.

A further fraction with the same solvent gave compound 14a as a crystalline solid ($2.40 \mathrm{~g}, 52 \%$), m.p. $156-157^{\circ} \mathrm{C}$ (from $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{Pr}^{\mathrm{i}}{ }_{2} \mathrm{O}$) (Found: $\mathrm{C}, 54.4 ; \mathrm{H}, 5.4 ; \mathrm{N}, 9.0 \%$); $v_{\text {max }}{ }^{-}$ $(\mathrm{KBr}) / \mathrm{cm}^{-1} 3419(\mathrm{NH}), 2258(\mathrm{CN}), 1725$ and $1674(\mathrm{C}=\mathrm{O})$; $\delta_{\mathrm{H}}\left(200 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 2.22\left(2 \mathrm{H}, \mathrm{m} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CN}\right), 2.39(3 \mathrm{H}, \mathrm{d}$, $J 1.2,6-\mathrm{Me}), 2.80(1 \mathrm{H}, \mathrm{d}, J 12,3-\mathrm{H}), 3.50,3.55$ and $3.57(3 \times 3$ H , each s, OMe), $3.94\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J} 5, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CN}\right), 3.96(1 \mathrm{H}, \mathrm{s}$, $\mathrm{OH}), 4.20(1 \mathrm{H}, \mathrm{s}, \mathrm{MeOCHOMe}), 4.26(1 \mathrm{H}, \mathrm{dd}, J 12$ and 1.2 , $4-\mathrm{H}), 5.36(1 \mathrm{H}, \mathrm{brs}, \mathrm{NH})$ and $7.40-8.11(4 \mathrm{H}, \mathrm{m}, \mathrm{ArH}) ; \delta_{\mathrm{c}}(75$ $\mathrm{MHz} ; \mathrm{CDCl}_{3}$) 173.33, 165.94, $152.02,148.52,146.98,133.92$, $129.31,121.80,121.74,116.93,105.58,96.74,80.68,58.22$, $57.49,56.66,53.16,52.12,41.83,21.51$ and $17.79 ; m / z 464$ $\left(M^{+}+H\right)$.

Reaction of 2-Cyanoethyl 3-Aminocrotonate with (E,Z)-Ethyl 4,4-Diethoxy-2-(3-nitrobenzylidene)acetoacetate 12b: Formation of (2S,3R,4S)-5-Cyanoethyl 3-Ethyl 2-Diethoxymethyl-2-hydroxy-6-methyl-4-(3-nitrophenyl)-1,2,3,4-tetrahydropyridine-3,5-dicarboxylate 14b (2R,3S,4S)-5-(2-Cyanoethyl) 3-Ethyl 2-Diethoxymethyl-2-hydroxy-6-methyl-4-(3-nitrophenyl)-1,2,3,4-
tetrahydropyridine-3,5-dicarboxylate 15b and 5-(2-Cyanoethyl) 3-Ethyl 2-Diethoxymethyl-6-methyl-4-(3-nitrophenyl)-1,4-dihy-dropyridine-3,5-dicarboxylate 16b.-By the same work-up procedure as that described above, compounds $\mathbf{1 4 b}, \mathbf{1 5 b}$ and 16b were prepared from the benzylideneacetoacetate 12 b .

Compound 16b: M.p. $112-113^{\circ} \mathrm{C}$ (from $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{Pr}^{\mathrm{i}}{ }_{2} \mathrm{O}$) (Found: C, 59.3; H, 6.0; N, 8.8. $\mathrm{C}_{24} \mathrm{H}_{29} \mathrm{~N}_{3} \mathrm{O}_{8}$ requires C, 59.13; $\mathrm{H}, 6.00 ; \mathrm{N}, 8.62 \%) ; v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 3350(\mathrm{NH}), 2252(\mathrm{CN})$ and $1700(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(200 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.18-1.33(3 \times 3 \mathrm{H}, \mathrm{m}$, $3 \times \mathrm{Me}), 2.40(3 \mathrm{H}, \mathrm{s}, 6-\mathrm{Me}), 2.66\left(2 \mathrm{H}, \mathrm{t}, J 5, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CN}\right)$, $3.56-3.87\left(2 \times 2 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}_{2}\right), 4.11\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CN}\right)$, 4.26 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{Me}$), 5.12 ($1 \mathrm{H}, \mathrm{s}, 4-\mathrm{H}$), 6.18 ($1 \mathrm{H}, \mathrm{s}$, EtOCHOEt), $6.97(1 \mathrm{H}, \mathrm{brs}, \mathrm{NH})$ and $7.38-8.15(4 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$; $\delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 166.17,165.92,149.19,148.40,146.88$, 144.52, 134.31, 128.99, 122.91, 121.66, 117.08, 104.60, 101.30, 96.39, 64.08, 63.92, 60.49, 58.45, 39.91, 20.11, 18.17, 15.25, 15.19 and 14.13; $m / z 487\left(\mathrm{M}^{+}+\mathrm{H}\right)$.

Compound 15b: M.p. $139-140^{\circ} \mathrm{C}$ (from $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{Et}_{2} \mathrm{O}$) (Found: C, 57.4; H, 5.9; N, 8.8. $\mathrm{C}_{24} \mathrm{H}_{31} \mathrm{~N}_{3} \mathrm{O}_{9}$ requires C, 57.02; $\mathrm{H}, 6.18 ; \mathrm{N}, 8.31 \%) ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3382(\mathrm{NH}), 2254(\mathrm{CN})$, 1709 and $1695(\mathrm{CO}) ; \delta_{\mathrm{H}}\left(200 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ 1.18, 1.27 and 1.43 $(3 \times 3 \mathrm{H}$, each $\mathrm{t}, J 7.5,3 \times \mathrm{Me}), 2.41\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CN}\right)$, $2.49(3 \mathrm{H}, \mathrm{s}, 6-\mathrm{Me}), 3.42\left(2 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{Me}\right), 3.44(1 \mathrm{H}, \mathrm{d}, J 8$, $3-\mathrm{H}), 3.79\left(2 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{Me}\right), 3.90(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 4.09(2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CN}\right), 4.26\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{Me}\right), 4.45(1 \mathrm{H}, \mathrm{s}$, EtOCHOEt), $4.54(1 \mathrm{H}, \mathrm{d}, J 8,4-\mathrm{H}), 5.77(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH})$ and 7.30-8.09 (4 H, m, ArH); $\delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 173.37,166.22$, 153.96, 147.68, 143.23, 135.87, 128.26, 124.19, 121.85, 117.03, $104.25,93.99,81.65,67.68,64.42,61.83,57.63,46.78,40.46,21.92$, 18.12, 15.44, 14.99 and $14.13 ; \mathrm{m} / \mathrm{z} 505\left(\mathrm{M}^{+}\right)$.

Compound 14b: M.p. $146-147{ }^{\circ} \mathrm{C}$ (from $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{Pr}^{\mathrm{i}} \mathrm{O}$) (Found: C, 57.2; H, 6.1; N, 8.4\%); $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3407$ (NH), $2252(\mathrm{CN}), 1723$ and $1683(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(200 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.94$ ($3 \mathrm{H}, \mathrm{t}, J 7.5, \mathrm{Me}$), $1.22(3 \mathrm{H}, \mathrm{t}, J 7.5, \mathrm{Me}), 1.24(3 \mathrm{H}, \mathrm{t}, J 7.5, \mathrm{Me})$, $2.21\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CN}\right), 2.38(3 \mathrm{H}, \mathrm{d}, J 1.2,6-\mathrm{Me}), 2.84(1 \mathrm{H}$, $\mathrm{d}, J 12,3-\mathrm{H}), 3.49-3.98\left(3 \times 2 \mathrm{H}, \mathrm{m}, 3 \times \mathrm{CH}_{2}\right), 4.09(1 \mathrm{H}, \mathrm{s}$, $\mathrm{OH}), 4.26(1 \mathrm{H}, \mathrm{dd}, J 12$ and $1.2,4-\mathrm{H}), 4.36(1 \mathrm{H}, \mathrm{s}, \mathrm{EtOCHOEt})$, $5.44(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH})$ and $7.39-8.12(4 \mathrm{H}, \mathrm{m}, \mathrm{ArH}) ; \delta_{\mathrm{c}}(75 \mathrm{MHz}$; CDCl_{3}) 173.21, 166.01, 152.23, 148.43, 147.14, 134.05, 129.24, 122.12, 121.58, 116.97, 103.58, 96.54, 80.60, 66.35, 65.02, 61.18, $57.45,52.91,42.10,21.62,17.78,15.26,15.19$ and $13.82 ; m / z 505$ $\left(\mathrm{M}^{+}\right)$.

Reaction of 2-Cyanoethyl 3-Aminocrotonate with (E,Z)Isopropyl 4,4-Diethoxy-2-(3-nitrobenzylidene)acetoacetate 12c: Formation of (2S,3R,4S)-5-(2-Cyanoethyl) 3-Isopropyl 2-Dieth-oxymethyl-2-hydroxy-6-methyl-4-(3-nitrophenyl)-1,2,3,4-tetra-hydropyridine- 3,5 -dicarboxylate 14 c , $(2 \mathrm{R}, 3 \mathrm{~S}, 4 \mathrm{~S})-5$-(2 -Cyanoethyl) 3-Isopropyl 2-Diethoxymethyl-2-hydroxy-6-methyl-4-(3-nitrophenyl)-1,2,3,4-tetrahydropyridine-3,5-dicarboxylate 15c and 5-(2-Cyanoethyl) 3-Isopropyl 2-Diethoxymethyl-6-methyl-4-(3-nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylate 16c.-By the same work-up procedure as that described above, compounds $14 \mathrm{c}, 15 \mathrm{c}$ and 16 c were prepared from benzylideneacetoacetate 12c.

Compound 16c: Yellow needles (Found: C, 59.8; H, 5.9; N, 8.1. $\mathrm{C}_{25} \mathrm{H}_{31} \mathrm{~N}_{3} \mathrm{O}_{8}$ requires $\mathrm{C}, 59.87 ; \mathrm{H}, 6.23 ; \mathrm{N}, 8.38 \%$); $v_{\text {max }}$ $(\mathrm{KBr}) / \mathrm{cm}^{-1} 3351(\mathrm{NH}), 2253(\mathrm{CN})$, and $1696(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}(200$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.12(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 6, \mathrm{MeCH} M e), 1.18-1.36(3 \times 3 \mathrm{H}$, $\mathrm{m}, 3 \times \mathrm{Me}), 2.39(3 \mathrm{H}, \mathrm{s}, 6-\mathrm{Me}), 2.65\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J} 6, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CN}\right)$, $3.72\left(2 \times 2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{OCHOCH}_{2}\right), 4.26(2 \mathrm{H}, \mathrm{t}, J 6$, $\left.\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CN}\right), 4.98\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH} \mathrm{Me}_{2}\right), 5.13(1 \mathrm{H}, \mathrm{s}, 4-\mathrm{H}), 6.21$ ($1 \mathrm{H}, \mathrm{s}, \mathrm{EtOCHOEt})$, $6.92(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH})$ and 7.35-8.20 (4 H , $\mathrm{m}, \mathrm{ArH}) ; m / z 501\left(\mathrm{M}^{+}\right)$.

Compound 15c: M.p. $155-156^{\circ} \mathrm{C}$ (from $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{Pr}^{\mathrm{i}} \mathrm{O}$) (Found: $\mathrm{C}, 57.8 ; \mathrm{H}, 6.4 ; \mathrm{N}, 8.1 . \mathrm{C}_{25} \mathrm{H}_{33} \mathrm{~N}_{3} \mathrm{O}_{9}$ requires $\mathrm{C}, 57.9 ; \mathrm{H}$, $6.40 ; \mathrm{N}, 8.09 \%$); $v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 3369(\mathrm{NH}), 2251(\mathrm{CN})$ and $1695(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}\left[200 \mathrm{MHz} ;\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}_{4}\right] 1.05(3 \mathrm{H}, \mathrm{t}, J 6$,
$\left.\mathrm{OCH}_{2} \mathrm{Me}\right), 1.16\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 6, \mathrm{OCH}_{2} \mathrm{Me}\right), 1.18(3 \mathrm{H}, \mathrm{d}, J 6, \mathrm{Me})$, $1.26(3 \mathrm{H}, \mathrm{d}, J 6, \mathrm{Me}), 2.40(3 \mathrm{H}, \mathrm{s}, 6-\mathrm{Me}), 2.58(2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CN}\right), 3.13(1 \mathrm{H}, \mathrm{d}, J 7,3-\mathrm{H}), 3.68(2 \times 2 \mathrm{H}, \mathrm{m}$, $\mathrm{MeCH}_{2} \mathrm{OCH}_{2} \mathrm{Me}$), $3.95\left(2 \mathrm{H}, \mathrm{t}, J 7, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CN}\right), 4.32(1 \mathrm{H}$, d, $J 7,4-\mathrm{H}), 4.47(1 \mathrm{H}, \mathrm{s}, \mathrm{EtOCHOEt}), 4.84\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH} \mathrm{Me}_{2}\right.$), $5.14(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 6.98(1 \mathrm{H}, \mathrm{s}, \mathrm{NH})$ and $7.37-8.08(4 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$; $m / z 520\left(\mathrm{M}^{+}+\mathrm{H}\right)$.

Compound 14c: M.p. $143-144{ }^{\circ} \mathrm{C}$ (from $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{Et}_{2} \mathrm{O}$) (Found: C, 57.7; H, 6.4; N, 8.1\%); $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3412$ (NH), $2253(\mathrm{CN}), 1720$ and $1682(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}[200 \mathrm{MHz}$; $\left.\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}_{4}\right] 0.72(3 \mathrm{H}, \mathrm{d}, J 6, \mathrm{Me}), 1.06(3 \mathrm{H}, \mathrm{d}, J 6, \mathrm{Me}), 1.13(3 \mathrm{H}$ $\left.\mathrm{t}, \mathrm{J} 6, \mathrm{CH}_{2} \mathrm{Me}\right)$, $1.18\left(3 \mathrm{H}, \mathrm{t}, J 6, \mathrm{CH}_{2} \mathrm{Me}\right), 2.22(1 \mathrm{H}, \mathrm{m}, \mathrm{CHCN})$, $2.28(3 \mathrm{H}, \mathrm{d}, J 1.2,6-\mathrm{Me}), 2.42(1 \mathrm{H}, \mathrm{m}, \mathrm{CHCN}), 2.70(1 \mathrm{H}, \mathrm{d}, J$ $12,3-\mathrm{H}), 3.72\left(3 \times 2 \mathrm{H}, \mathrm{m}, 3 \times \mathrm{CH}_{2}\right), 4.15(1 \mathrm{H}, \mathrm{dd}, J 12$ and $1.2,4-\mathrm{H}), 4.34(1 \mathrm{H}, \mathrm{s}, \mathrm{EtOCHOEt}), 4.70(1 \mathrm{H}, \mathrm{m}, \mathrm{MeC} H \mathrm{Me})$, $5.32(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 6.93(1 \mathrm{H}, \mathrm{s}, \mathrm{NH})$ and $7.48-8.10(4 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$; $m / z 520\left(\mathrm{M}^{+}+\mathrm{H}\right)$.

Reaction of 2-Cyanoethyl 3-Aminocrotonate with (E,Z)Isobutyl 4,4-Diethoxy-2-(3-nitrobenzylidene)acetoacetate 12d: Formation of (2S,3R,4S)-5-(2-Cyanoethyl) 3-Isobutyl 2-Dieth-oxymethyl-2-hydroxy-6-methyl-4-(3-nitrophenyl)-1,2,3,4-tetra-hydropyridine-3,5-dicarboxylate 14d, (2R,3S,4S)-5-(2-Cyanoethyl) 3-Isobutyl 2-Diethoxymethyl-2-hydroxy-6-methyl-4-(3-nitrophenyl)-1,2,3,4-tetrahydropyridine-3,5-dicarboxylate 15d and 5-(2-Cyanoethyl) 3-Isobutyl 2-Diethoxymethyl-6-methyl-4-(3-nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylate 16d.-By the same work-up procedure as that described above, compounds $14 \mathrm{~d}, 15 \mathrm{~d}$ and 16 d were prepared from benzylideneacetoacetate 12d.

Compound 16d: Yellow needles (Found: C, 60.3; H, 6.4; N, 8.2. $\mathrm{C}_{26} \mathrm{H}_{33} \mathrm{~N}_{3} \mathrm{O}_{8}$ requires $\mathrm{C}, 60.57 ; \mathrm{H}, 6.45 ; \mathrm{N}, 8.15 \%$); $v_{\max }($ neat $) / \mathrm{cm}^{-1} 3368(\mathrm{NH}), 2253(\mathrm{CN})$ and $1697(\mathrm{C}=\mathrm{O})$; $\delta_{\mathrm{H}}\left(200 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.82(3 \mathrm{H}, \mathrm{d}, J 7, \mathrm{Me}), 0.88(3 \mathrm{H}, \mathrm{d}, J 7$, $\mathrm{Me}), 1.27(2 \times 3 \mathrm{H}, \mathrm{t}, J 7,2 \times \mathrm{Me}), 1.91(1 \mathrm{H}, \mathrm{m}, \mathrm{MeC} H \mathrm{Me})$, $2.40(3 \mathrm{H}, \mathrm{s}, 6-\mathrm{Me}), 2.68\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J} 6, \mathrm{CH}_{2} \mathrm{CN}\right), 3.68(2 \times 2 \mathrm{H}, \mathrm{m}$, $\mathrm{MeCH}_{2} \mathrm{OCHCH}_{2} \mathrm{Me}$), 3.85 ($2 \mathrm{H}, \mathrm{d}, \mathrm{J} 6, \mathrm{CH}_{2} \mathrm{CHMe}_{2}$), 4.30 ($2 \mathrm{H}, \mathrm{t}, J 6, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CN}$), $5.16(1 \mathrm{H}, \mathrm{s}, 4-\mathrm{H}), 6.23(1 \mathrm{H}, \mathrm{s}$, EtOCHOEt), $6.99(1 \mathrm{H}, \mathrm{brs}, \mathrm{NH})$ and $7.35-8.18(4 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$; $m / z 515\left(\mathrm{M}^{+}\right)$.
Compound 15d: M.p. $168-169{ }^{\circ} \mathrm{C}$ (from $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{Pr}_{2}{ }_{2} \mathrm{O}$) (Found: C, 58.5; H, 6.6; N, 7.9. $\mathrm{C}_{26} \mathrm{H}_{35} \mathrm{~N}_{3} \mathrm{O}_{9}$ requires $\mathrm{C}, 58.52$; $\mathrm{H}, 6.61 ; \mathrm{N}, 7.88 \%$); $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3376(\mathrm{NH}), 2249(\mathrm{CN})$, 1710 and $1693(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}\left[200 \mathrm{MHz} ;\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}_{4}\right] 0.90(2 \times$ $3 \mathrm{H}, \mathrm{d}, J 7, \mathrm{CH} M e), 1.05\left(3 \mathrm{H}, \mathrm{t}, J 6, \mathrm{OCH}_{2} \mathrm{Me}\right), 1.15(3 \mathrm{H}, \mathrm{t}, J 6$, $\left.\mathrm{OCH}_{2} \mathrm{Me}\right), 1.90\left(1 \mathrm{H}, \mathrm{m}, \mathrm{C} H \mathrm{Me}_{2}\right), 2.38(3 \mathrm{H}, \mathrm{s}, 6-\mathrm{Me}), 2.57(2 \mathrm{H}$, $\mathrm{t}, J 6, \mathrm{CH}_{2} \mathrm{CN}$), $3.21(1 \mathrm{H}, \mathrm{d}, J 6,3-\mathrm{H}), 3.55-3.83(3 \times 2 \mathrm{H}, \mathrm{m}$, $\left.3 \times \mathrm{CH}_{2}\right), 3.93\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J} 6, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CN}\right), 4.34(1 \mathrm{H}, \mathrm{d}, J 6$, $4-\mathrm{H}), 4.45(1 \mathrm{H}, \mathrm{s}, \mathrm{EtOCHOEt}), 5.05(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 6.98(1 \mathrm{H}, \mathrm{s}$, $\mathrm{NH})$ and 7.39-8.07 ($4 \mathrm{H}, \mathrm{m}, \mathrm{ArH}) ; m / z 534\left(\mathrm{M}^{+}+\mathrm{H}\right)$.

Compound 14d: Pale yellow needles (Found: C, 58.4; H, 6.4; N, 7.9%); $v_{\max }($ neat $) / \mathrm{cm}^{-1} 3420(\mathrm{NH}), 2253$ (CN) and 1699 $(\mathrm{CO}) ; \delta_{\mathrm{H}}\left[200 \mathrm{MHz} ;\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}_{4}\right] 0.57(3 \mathrm{H}, \mathrm{d}, J 7, \mathrm{Me}), 0.62$ ($3 \mathrm{H}, \mathrm{d}, J 7, \mathrm{Me}$), $1.11\left(3 \mathrm{H}, \mathrm{t}, J 6, \mathrm{OCH}_{2} \mathrm{Me}\right), 1.16(3 \mathrm{H}, \mathrm{t}, J 6$, $\left.\mathrm{OCH}_{2} \mathrm{Me}\right), 1.56\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH} \mathrm{Me}_{2}\right), 2.30(3 \mathrm{H}, \mathrm{d}, J 1.2,6-\mathrm{Me})$, $2.32\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CN}\right), 2.75(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 12,3-\mathrm{H}), 3.41-3.86$ $\left(4 \times 2 \mathrm{H}, \mathrm{m}, 4 \times \mathrm{CH}_{2}\right), 4.15(1 \mathrm{H}, \mathrm{dd}, J 12$ and $1.2,4-\mathrm{H}), 4.33$ $(1 \mathrm{H}, \mathrm{s}, \mathrm{EtOCHOEt}), 5.33(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 6.96(1 \mathrm{H}, \mathrm{brs}, \mathrm{NH})$ and 7.48-8.11 ($4 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$); m/z $534\left(\mathrm{M}^{+}+\mathrm{H}\right)$.

Reaction of 2-Cyanoethyl 3-Aminocrotonate with (E,Z)-Ethyl 4,4-Diethoxy-2-[3-(trifluoromethyl)benzylidene]acetoacetate 12e: Formation of (2S,3R,4S)-5-(2-Cyanoethyl) 3-Ethyl 2-Dieth-oxymethyl-2-hydroxy-6-methyl-4-[3-trifuoromethyl)phenyl]-1,2,3,4-tetrahydropyridine-3,5-dicarboxylate 14e, (2R,3S,4S)-5-(2-Cyanoethyl) 3-Ethyl 2-Diethoxymethyl-2-hydroxy-6-methyl-4-[3-(triffuoromethyl)phenyl]-1,2,3,4-tetrahydropyridine-3,5-dicarboxylate 15e and 5-(2-Cyanoethyl) 3-Ethyl 2-Diethoxy-methyl-6-methyl-4-[3-(triffuoromethyl)phenyl]-1,4-dihydropyr-
idine-3,5-dicarboxylate 16e.-By the same work-up procedure as that described above, compounds $14 \mathrm{e}, 15 \mathrm{e}$ and 16 e were prepared from benzylideneacetoacetate $\mathbf{1 2 e}$.

Compound 16e: Yellow needles (Found: C, 58.7; H, 5.6; N, 5.2. $\mathrm{C}_{25} \mathrm{H}_{29} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{6}$ requires $\mathrm{C}, 58.82 ; \mathrm{H}, 5.73 ; \mathrm{N}, 5.49 \%$); $v_{\max }($ neat $) / \mathrm{cm}^{-1} 3337(\mathrm{NH}), 2254(\mathrm{CN})$ and $1698(\mathrm{C}=0)$; $\delta_{\mathrm{H}}\left(200 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.21,1.23$ and $1.25(3 \times 3 \mathrm{H}$, each $\mathrm{t}, J 6$, $3 \times \mathrm{Me}), 2.40(3 \mathrm{H}, \mathrm{s}, 6-\mathrm{Me})$, $2.63\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J} 6, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CN}\right)$, 3.45-3.93 ($\left.2 \times 2 \mathrm{H}, \mathrm{m}, \mathrm{MeCH}_{2} \mathrm{OCHOCH} 2 \mathrm{Me}\right), 4.11(2 \mathrm{H}, \mathrm{q}, \mathrm{J}$ 6, $\left.\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{Me}\right), 4.25\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CN}\right), 5.08(1 \mathrm{H}, \mathrm{s}$, $4-\mathrm{H}), 6.22(1 \mathrm{H}, \mathrm{s}, \mathrm{EtOCHOEt}), 6.89(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH})$ and $7.28-$ $7.63(4 \mathrm{H}, \mathrm{m}, \mathrm{ArH}) ; m / z 510\left(\mathrm{M}^{+}\right)$.

Compound 15e: Yellow needles (Found: C, 56.9; H, 5.85; N, 5.3. $\mathrm{C}_{25} \mathrm{H}_{31} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{7}$ requires $\mathrm{C}, 56.81 ; \mathrm{H}, 5.91 ; \mathrm{N}, 5.30 \%$); $v_{\max }($ neat $) / \mathrm{cm}^{-1} 3425(\mathrm{NH}), 2253(\mathrm{CN})$ and $1698(\mathrm{C}=0)$; $\delta_{\mathrm{H}}\left[200 \mathrm{MHz} ;\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}_{4}\right] 1.05\left(3 \mathrm{H}, \mathrm{t}, J 6, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{Me}\right)$, $1.14\left(3 \mathrm{H}, \mathrm{t}, J 6, \mathrm{OCH}_{2} \mathrm{Me}\right), 1.16\left(3 \mathrm{H}, \mathrm{t}, J 6 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{Me}\right), 2.36$ $(3 \mathrm{H}, \mathrm{s}, 6-\mathrm{Me}), 2.58\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J} 6, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CN}\right), 3.16(1 \mathrm{H}, \mathrm{d}, J 7$, $3-\mathrm{H}), 3.68\left(2 \times 2 \mathrm{H}, \mathrm{m}, \mathrm{MeCH}_{2} \mathrm{OCHOC} \mathrm{H}_{2} \mathrm{Me}\right), 3.93(2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{Me}\right), 4.04\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CN}\right), 4.38(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 7,4-$ H), $4.42(1 \mathrm{H}, \mathrm{s}$, EtOCHOEt), $5.08(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 6.96(1 \mathrm{H}, \mathrm{s}$, $\mathrm{NH})$ and $7.26-7.65(4 \mathrm{H}, \mathrm{m}, \mathrm{ArH}) ; m / z 529\left(\mathrm{M}^{+}+\mathrm{H}\right)$.

Compound 14e: M.p. $120-122^{\circ} \mathrm{C}$ (from $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{Et}_{2} \mathrm{O}$) (Found: C, 56.8; H, 5.9; N, 5.2\%); $v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 3409(\mathrm{NH})$, $2254(\mathrm{CN}), 1722$ and $1682(\mathrm{C}=\mathrm{O})$; $\delta_{\mathrm{H}}\left[200 \mathrm{MHz} ;\left(\mathrm{CD}_{3}\right) \mathrm{SO}_{4}\right]$ $0.89\left(3 \mathrm{H}, \mathrm{t}, J 6, \mathrm{CH}_{2} \mathrm{Me}\right), 1.09\left(3 \mathrm{H}, \mathrm{t}, J 6, \mathrm{OCH}_{2} \mathrm{Me}\right), 1.15(3 \mathrm{H}$, $\left.\mathrm{t}, J 6, \mathrm{OCH}_{2} \mathrm{Me}\right), 2.11(1 \mathrm{H}, \mathrm{m}, \mathrm{CHCN}), 2.29(3 \mathrm{H}, \mathrm{d}, J 1.2,6-$ Me), $2.43(1 \mathrm{H}, \mathrm{m}, \mathrm{CHCN}), 2.70(1 \mathrm{H}, \mathrm{d}, J 12,3-\mathrm{H}), 3.42-3.92$ $\left(4 \times 2 \mathrm{H}, \mathrm{m}, 4 \times \mathrm{CH}_{2}\right), 4.10(1 \mathrm{H}, \mathrm{dd}, J 12$ and $1.2,4-\mathrm{H}), 4.32$ $(1 \mathrm{H}, \mathrm{s}, \mathrm{EtOCHOEt}), 5.29(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 6.81(1 \mathrm{H}, \mathrm{s}, \mathrm{NH})$ and 7.28-7.60 ($4 \mathrm{H}, \mathrm{m}, \mathrm{ArH}) ; m / z 529\left(\mathrm{M}^{+}+\mathrm{H}\right)$.

Reaction of 2-Cyanoethyl 3-Aminocrotonate with (E,Z)-Ethyl 4,4-Diethoxy-2-[2-(triffuoromethyl)benzylidene]acetoacetate 12f: Formation of (2S,3R,4S)-5-(2-Cyanoethyl) 3-Ethyl 2-Dieth-oxymethyl-2-hydroxy-6-methyl-4-[2-(trifluoromethyl)phenyl]-1,2,3,4-tetrahydropyridine-3,5-dicarboxylate 14f and 5-(2-Cyanoethyl) 3-Ethyl 2-Diethoxymethyl-6-methyl-4-[2-(trifluorometh-yl)phenyl]-1,4-dihydropyridine-3,5-dicarboxylate 16f.-By the same work-up procedure as that described above, compounds $\mathbf{1 4 f}$ and $\mathbf{1 6 f}$ were prepared from benzylideneacetoacetate $\mathbf{1 2 f}$.

Compound 16f: Yellow needles; $v_{\text {max }}($ neat $) / \mathrm{cm}^{-1} 3406$ (NH), $2254(\mathrm{CN})$ and $1703(\mathrm{C}=\mathrm{O})$ (Found: C, 58.7; H, 5.7; N, 5.3. $\mathrm{C}_{25} \mathrm{H}_{29} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{6}$ requires $\mathrm{C}, 58.82 ; \mathrm{H}, 5.73 ; \mathrm{N}, 5.49 \%$); $v_{\max }($ neat $) / \mathrm{cm}^{-1} 3406(\mathrm{NH}), 2254(\mathrm{CN})$ and $1703(\mathrm{C}=\mathrm{O})$; $\delta_{\mathrm{H}}\left[200 \mathrm{MHz} ;\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}_{4}\right] 1.10(3 \mathrm{H}, \mathrm{t}, J 6, \mathrm{Me}), 1.14(3 \mathrm{H}, \mathrm{t}, J$ 6, Me), 1.18 ($3 \mathrm{H}, \mathrm{t}, J 6, \mathrm{Me}$), $2.36(3 \mathrm{H}, \mathrm{s}, 6-\mathrm{Me}), 2.78(2 \mathrm{H}, \mathrm{t}, J 6$, $\mathrm{CH}_{2} \mathrm{CN}$), 3.39-3.75 ($2 \times 2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{OCH}_{2}$), 3.91-4.11 (2 H , $\left.\mathrm{m}, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{Me}\right), 4.25\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CN}\right), 5.41(1 \mathrm{H}, \mathrm{s}, 4-\mathrm{H})$, $5.86(1 \mathrm{H}, \mathrm{s}, \mathrm{EtOCHOEt}), 7.27-7.76(4 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$ and 8.66 $(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}) ; m / z 511\left(\mathrm{M}^{+}+\mathrm{H}\right)$.

Compound 14f: M.p. $61-62^{\circ} \mathrm{C}$ (Found: C, $56.8 ; \mathrm{H}, 5.9$; N, 5.1. $\mathrm{C}_{25} \mathrm{H}_{31} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{7}$ requires $\mathrm{C}, 56.81 ; \mathrm{H}, 5.91 ; \mathrm{N}, 5.30 \%$); $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3336(\mathrm{NH}), 2253(\mathrm{CN})$ and $1695(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}[200$ $\left.\mathrm{MHz} ;\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}_{4}\right] 0.81\left(3 \mathrm{H}, \mathrm{t}, J 7, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{Me}\right), 1.06(3 \mathrm{H}, \mathrm{t}, J 7$, $\left.\mathrm{OCH}_{2} \mathrm{Me}\right), 1.08\left(3 \mathrm{H}, \mathrm{t}, J 7, \mathrm{OCH}_{2} \mathrm{Me}\right), 2.26(3 \mathrm{H}, \mathrm{d}, J 1.2,6-\mathrm{Me})$, $2.32\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CN}\right), 2.82(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 12,3-\mathrm{H}), 3.67-3.88(3 \times 2$ $\left.\mathrm{H}, \mathrm{m}, 3 \times \mathrm{CH}_{2}\right), 4.11\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CN}\right), 4.35(1 \mathrm{H}, \mathrm{s}$, $\mathrm{EtOCHOEt}), 4.45(1 \mathrm{H}, \mathrm{dd}, J 12$ and $1.2,4-\mathrm{H}), 5.24(1 \mathrm{H}, \mathrm{s}, \mathrm{OH})$, $6.73(1 \mathrm{H}, \mathrm{s}, \mathrm{NH})$ and $7.25-7.65(4 \mathrm{H}, \mathrm{m}, \mathrm{ArH}) ; m / z 528\left(\mathrm{M}^{+}\right)$.

Reaction of 2-Cyanoethyl 3-Aminocrotonate with (E/Z)-Ethyl 2-(3-Chlorobenzylidene)-4,4-diethoxyacetoacetate 12g: Formation of (2S,3R,4S)-5-(2-Cyanoethyl) 3-Ethyl4-(3-Chlorophenyl)-2-diethoxymethyl-2-hydroxy-6-methyl-1,2,3,4-tetrahydropyrid-ine-3,5-dicarboxylate $\mathbf{1 4 g}$.-By the same work-up procedure as that described above, compound $\mathbf{1 4 g}$ was prepared from benzylideneacetoacetate $\mathbf{1 2 g}$.

Compound $\mathbf{1 4 g}$: M.p. ${ }^{120-121}{ }^{\circ} \mathrm{C}$ (from $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{Pr}_{2}{ }_{2} \mathrm{O}$) (Found: C, 58.1; H, 6.3; N, 5.6. $\mathrm{C}_{24} \mathrm{H}_{31} \mathrm{ClN}_{2} \mathrm{O}_{7}$ requires C, $58.23 ; \mathrm{H}, 6.31 ; \mathrm{N}, 5.66 \%) ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3409$ (NH), 2254 $(\mathrm{CN}), 1723$ and $1681(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}\left[200 \mathrm{MHz}\right.$; $\left.\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}_{4}\right] 0.93$ ($3 \mathrm{H}, \mathrm{t}, J 6, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{Me}$), $1.10\left(3 \mathrm{H}, \mathrm{t}, J 7, \mathrm{OCH}_{2} M e\right), 1.16(3 \mathrm{H}$, $\left.\mathrm{t}, J 7, \mathrm{OCH}_{2} \mathrm{Me}\right), 2.15(1 \mathrm{H}, \mathrm{m}, \mathrm{CHCN}), 2.25(3 \mathrm{H}, \mathrm{d}, J 1.2$, $6-\mathrm{Me}), 2.45(1 \mathrm{H}, \mathrm{m}, \mathrm{CHCN}), 2.70(1 \mathrm{H}, \mathrm{d}, J 12,3-\mathrm{H}), 3.46-3.94$ $\left(4 \times 2 \mathrm{H}, \mathrm{m}, 4 \times \mathrm{CH}_{2}\right), 4.00(1 \mathrm{H}, \mathrm{dd}, J 12$ and $1.2,4-\mathrm{H}), 4.30$ $(1 \mathrm{H}, \mathrm{s}, \mathrm{EtOCHOEt}), 5.24(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 6.73(1 \mathrm{H}, \mathrm{s}, \mathrm{NH})$ and 6.95-7.31 (4 H, m, ArH); m/z $494\left(\mathrm{M}^{+}\right)$.

Reaction of 2-Cyanoethyl 3-Aminocrotonate with (E,Z)-Ethyl 2-Benzylidene-4,4-diethoxyacetoacetate 12h: Formation of (2S,3R,4S)-5-(2-Cyanoethyl) 3-Ethyl 2-Diethoxymethyl-2-hyd-roxy-6-methyl-4-phenyl-1,2,3,4-tetrahydropyridine-3,5-dicarboxylate 14h and 5-(2-Cyanoethyl) 3-Ethyl 2-Diethoxymethyl-6-methyl-4-phenyl-1,4-dihydropyridine-3,5-dicarboxylate 16h.By the same work-up procedure as that described above, compounds 14 h and 16 h were prepared from benzylideneacetoacetate $\mathbf{1 2 h}$.

Compound 16h: Yellow needles (Found: C, 5.0; H, 6.8; N, 6.1. $\mathrm{C}_{24} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{6}$ requires $\mathrm{C}, 65.14 ; \mathrm{H}, 6.83$; $\mathrm{N}, 6.33 \%$; ; $v_{\text {max }}-$ $(\mathrm{KBr}) / \mathrm{cm}^{-1} 3404(\mathrm{NH}), 2253(\mathrm{CN})$ and $1696(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}[200$ $\left.\mathrm{MHz} ;\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}_{4}\right] 1.20-1.27(3 \times 3 \mathrm{H}, \mathrm{m}, 3 \times \mathrm{Me}), 2.36(3 \mathrm{H}$, $\mathrm{s}, 6-\mathrm{Me})$, $2.84\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CN}\right)$, 3.42-3.78 ($2 \times 2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}_{2} \mathrm{OCHOCH}_{2}\right), 4.05\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{Me}\right), 4.15(2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CN}\right), 4.93(1 \mathrm{H}, \mathrm{s}, 4-\mathrm{H}), 6.13(1 \mathrm{H}, \mathrm{s}, \mathrm{EtOCHOEt})$, $7.08-7.28(5 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$ and $8.62(1 \mathrm{H}, \mathrm{brs}, \mathrm{NH}) ; m / z 442\left(\mathrm{M}^{+}\right)$.

Compound 14h: M.p. $118-119{ }^{\circ} \mathrm{C}$ (from $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{Pr}^{\mathbf{i}}{ }_{2} \mathrm{O}$) (Found: C, 62.6; H, 7.0; N, 6.1. $\mathrm{C}_{24} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}_{7}$ requires C, 62.59; $\mathrm{H}, 7.00 ; \mathrm{N}, 6.08 \%) ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3337(\mathrm{NH}), 2255(\mathrm{CN})$ and $1694(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}\left[200 \mathrm{MHz}\right.$; $\left.\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}_{4}\right] 0.92(3 \mathrm{H}, \mathrm{t}, J 6$, $\left.\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{Me}\right)$, $1.11\left(3 \mathrm{H}, \mathrm{t}, J 6, \mathrm{OCH}_{2} \mathrm{Me}\right), 1.16(3 \mathrm{H}, \mathrm{t}, J 6$, $\left.\mathrm{OCH}_{2} \mathrm{Me}\right), 2.02(1 \mathrm{H}, \mathrm{m}, \mathrm{CHCN}), 2.23(3 \mathrm{H}, \mathrm{d}, J 1.2,6-\mathrm{Me}), 2.32$ $(1 \mathrm{H}, \mathrm{m}, \mathrm{CHCN}), 2.74(1 \mathrm{H}, \mathrm{d}, J 12,3-\mathrm{H}), 3.45-3.80(3 \times 2 \mathrm{H}$, $\mathrm{m}, 3 \times \mathrm{CH}_{2}$), $3.83\left(2 \mathrm{H}, \mathrm{q}, J 6, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{Me}\right), 4.01(1 \mathrm{H}, \mathrm{dd}, J$ 12 and 1.2, 4-H), $4.30(1 \mathrm{H}, \mathrm{s}, \mathrm{EtOCHOEt}), 5.13(1 \mathrm{H}, \mathrm{s}, \mathrm{OH})$, $6.60(1 \mathrm{H}, \mathrm{s}, \mathrm{NH})$ and $6.99-7.38(5 \mathrm{H}, \mathrm{m}, \mathrm{ArH}) ; m / z 460\left(\mathrm{M}^{+}\right)$.

Dehydration of the 1,2,3,4-Tetrahydropyridines 14a and 15a.A solution of the 1,2,3,4-tetrahydropyridine $14 \mathrm{a}(463 \mathrm{mg}, 1.00$ mmol) in acetone ($20 \mathrm{~cm}^{3}$) was treated with camphor-10sulfonic acid ($23.2 \mathrm{mg}, 0.10 \mathrm{mmol}$) and the mixture was stirred at room temperature for 2 h . The reaction mixture was diluted with water and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The extract was washed with brine, and concentrated to dryness. The product 16a was recrystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{Pr}_{2}{ }_{2} \mathrm{O}$ as pale yellow crystals ($436 \mathrm{mg}, 98 \%$).

Similarly, compound $16 a$ was prepared in 99% yield from compound 15a.

5-(2-Cyanoethyl) 3-Methyl 2-Formyl-6-methyl-4-(3-nitro-phenyl)-1,4-dihydropyridine-3,5-dicarboxylate 17.-To a solution of compound $14 \mathrm{a}(463 \mathrm{mg}, 1 \mathrm{mmol})$ in aq. acetone ($1: 1 ; 20$ cm^{3}) was added $6 \mathrm{~mol} \mathrm{dm}{ }^{-3} \mathrm{HCl}\left(0.3 \mathrm{~cm}^{3}\right)$ and the mixture was stirred at room temperature for 1 h . The precipitate was filtered off, washed with water and then dried in vacuo. Recrystallization from methanol-diethyl ether gave compound 17 as pale yellow crystals ($436 \mathrm{mg}, 98 \%$), m.p. $125-126^{\circ} \mathrm{C}$ (Found: C, 57.2; $\mathrm{H}, 4.2 ; \mathrm{N}, 10.4$. $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{7}$ requires $\mathrm{C}, 57.14 ; \mathrm{H}, 4.29$; $\mathrm{N}, 10.52 \%$); $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3335(\mathrm{NH}), 2250(\mathrm{CN}), 1708$ and $1673(\mathrm{C}=\mathrm{O})$; $\delta_{\mathrm{H}}\left[200 \mathrm{MHz} ;\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}_{4}\right] 2.41(3 \mathrm{H}, \mathrm{s}, 6-\mathrm{Me})$, $2.84\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CN}\right), 3.70\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{Me}\right), 4.15(2 \mathrm{H}, \mathrm{m}$, $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CN}$), $5.11(1 \mathrm{H}, \mathrm{s}, 4-\mathrm{H}), 7.53-8.13(4 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 9.31$ ($1 \mathrm{H}, \mathrm{brs}, \mathrm{NH}$) and $10.20(1 \mathrm{H}, \mathrm{s}, \mathrm{CHO}) ; m / z 400\left(\mathrm{M}^{+}+\mathrm{H}\right)$.

Similarly, compound 17 was prepared in 92% yield from compound 15a.

Crystal-structure Determination.-Single crystals of compounds 14a and 15a suitable for X-ray diffraction study were obtained from methanol-diethyl ether after concentration of the mother liquor by evaporation of the solvent at 293 K . Data collection was performed by a Mac-Science MXC18 diffractometer. The structures were solved by direct methods using SHELXS $86{ }^{10}$ and refined by full-matrix least-squares.

Crystal data of 14a: $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{9}, M_{\mathrm{r}}=463.00$, triclinic, space group $P \overline{1}, a=9.381(2), b=14.858(2), c=9.188(2) \AA$, $\alpha=101.85(2), \beta=111.07(2), \gamma=100.81(1)^{\circ}, V=1120.5(3) \AA^{3}$, $T=293 \mathrm{~K}, \quad Z=2, \quad D_{\mathrm{x}}=1.37 \mathrm{~g} \quad \mathrm{~cm}^{-1}, \quad \lambda(\mathrm{Cu}-\mathrm{K} \alpha)=$ $1.54178 \AA, \mu=8.23 \mathrm{~cm}^{-1}, R=0.049$ over 3696 independent reflections.

Crystal data of 15a: $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{9}, M_{\mathrm{r}}=463.00$, triclinic, space group $P \overline{1}, a=11.065(4), b=12.613(3), c=9.573(5) \AA$, $\alpha=96.80(3), \beta=111.89(3), \gamma=109.34(2)^{\circ}, V=1124.3(7) \AA^{3}$, $T=293 \quad \mathrm{~K}, \quad Z=2, \quad D_{\mathrm{x}}=1.37 \mathrm{~g} \mathrm{~cm}^{-1}, \quad \lambda(\mathrm{Cu}-\mathrm{K} \alpha)=$ $1.54178 \AA, \mu=8.20 \mathrm{~cm}^{-1}, R=0.093$ over 3673 independent reflections.*

[^1]
References

1 F. Bossert and W. Vater, Naturwissenschaften, 1971, 58, 578; W. Vater, G. Kroneberg, F. Floffmeister, H. Kaller, K. Meng, A. Oberdorf, W. Puls, K. Schlomann and K. Stoepel, Arzneim.-Forsch., 1972, 22, 1; G. Ellrodt, C. Y. C. Chew and B. N. Singh, Circulation, 1980, 62, 669; H. S. Mueller and R. A. Chahine, Am. J. Cardiol., 1981, 71, 645; R. G. Leonard and R. L. Talbert, Clin. Pharm., 1982, 1, 17; C. Spivack, S. Ocken and W. H. Frieshman, Drugs, 1983, 25, 154.
2 M. Iwanami, T. Shibanuma, M. Fujimoto, R. Kawai, K. Tamazawa, T. Takenaka, K. Takahashi and M. Murakami, Chem. Pharm. Bull., 1979, 27, 1426; T. Takenaka, S. Usuda, T. Nomura, H. Maeno and T. Sado, Arzneim.-Forsch., 1976, 26, 2172; T. Takenaka, I. Miyazaki, M. Asano, S. Higuchi and S. Maeno, Jpn. J. Pharmacol., 1982, 32, 665; T. Seki and T. Takenaka, Int. J. Clin. Pharmacol., 1977, 15, 267; K. Muto, T. Kuroda, H. Kawato, A. Karasawa, K. Kudo and N. Nakazato, Arzneim.-Forsch., 1988, 38, 1662; R. Towart, E. Wehinger, H. Meyer and S. Kazda, Arzneim.-Forsch., 1982, 32, 338. K. Meguro, M. Aizawa, T. Shoda, Y. Kawamatsu and A. Nagaoka, Chem. Pharm. Bull., 1985, 35, 3387; For review see: A. Sausins and G. Duburs, Heterocycles, 1988, 27, 269; Taisho Patent, Jpn. Kokai Tokyo Koho, 58-185 562, 1983 (Chem. Abstr., 1983, 100, 68 180); T. Ogawa, T. Nakazato, K. Tsuchida and K. Hatayama, Chem. Pharm. Bull., 1993, 41, 1, 108.
3 A. M. Triggle, E. Shefter and D. J. Triggle, J. Med. Chem., 1980, 23, 1442; P. Bellemann, Innovative Approaches in Drug Research, Elsevier, Amsterdam, 1986, p. 23; S. Goldmann, L. Born, S. Kazda, B. Pittel and M. Schramm, J. Med. Chem., 1990, 33, 1413.
4 A. Hantzsch, Justus Liebig's Ann. Chem., 1882, 1, 215; F. Bosser, H. Beyer and E. Wehinger, Angew. Chem., Int. Ed. Engl., 1981, 20, 762 and references cited therein.
5 B. Sigh and G. Y. Lesher, J. Heterocycl. Chem., 1980, 17, 1109
6 A. L. G. Boxter, J. Dixon, K. J. Gould, T. McInally and A. C. Tinker, Eur. Pat. Appl. 125 803, 198 ? (Chem. Abstr., 1985, 102, 203 874).
7 T. Ogawa, K. Matsumoto, M. Yoshimura, K. Hatayama, K. Kitamura and Y. Kita, Tetrahedron Lett., 1993, 34, 1967.
8 T. B. Johnson and L. A. Mikeska, J. Am. Chem. Soc., 1919,41, 810; E. Bisagni, J. P. Marquet and J. Andre-Louisfert, Bull. Soc. Chim. Fr., 1968, 637; Y. Satoh, M. Ichihashi and K. Okumura, Chem. Pharm. Bull., 1991, 39, 3189.
9 J. d'Augel, G. Revial, A. Guingant, C. Riche and A. Chiaroni, Tetrahedron Lett., 1989, 30, 2645.
10 G. M. Sheldrick, SHELXS 86, Program for Crystal Structure Determination, University of Göttingen, Germany, 1986.

Paper 3/02599C
Received 6th May 1993
Accepted 17th July 1993

[^0]: * Treatment of diastereoisomers 14a and 15a with dil. hydrochloric acid (0.1 mol equiv.) in aq. acetone afforded 2 -formyl-1,4-dihydropyridine 17 in excellent yield.

[^1]: * Supplementary data (see 'Instructions for Authors,' in the January issue). Positional and isotropic thermal parameters (Table 2), bond lengths and angles (Table 3), atomic coordinates, bond lengths and angles involving H -atoms, and anisotropic thermal parameters have been deposited at the Cambridge Crystallographic Data Centre.

